Monatshefte für Chemie 106, 879-886 (1975) © by Springer-Verlag 1975

Vibrational Analysis of Nb₂Br₁₀ and Ta₂Br₁₀: Harmonic Force Field and Mean Amplitudes

By

H. Hovdan and S. J. Cyvin

Institutt for teoretisk kjemi, Norges tekniske högskole, Universitetet i Trondheim, Trondheim-NTH, Norway,

and

W. Brockner

Anorganisch-Chemisches Institut, Technische Universität Clausthal, Clausthal-Zellerfeld, Federal Republic of Germany

(Received March 20, 1975)

Normal coordinate analyses for Nb_2Br_{10} and Ta_2Br_{10} are performed. The final force constants are given in terms of symmetry coordinates. Assignments of vibrational frequencies are given along with the corresponding potential energy distributions. Calculated mean amplitudes of vibration for the bonded distances are reported.

Introduction

This is a continuation of our vibrational studies of some metal pentahalide dimers. The analysis of Nb₂Cl₁₀ and Ta₂Cl₁₀¹ is followed up by similar studies of the corresponding bromides. This approach seems to be warranted for several reasons. Firstly, it is supposed to give a useful check of the experimental assignments of the vibrational frequencies. Secondly, it may lead to a complete harmonic force field on a relatively firm basis. Only a few papers on Nb₂Br₁₀ and Ta₂Br₁₀^{2, 3} in this direction are available so far and they may certainly be improved. Finally, a force field developed in the course of this analysis may be useful for calculations of various molecular constants. In the present work the application to calculations of mean amplitudes of vibration is reported.

Normal Coordinate Analysis

Molecular Structure

The niobium and tantalum pentabromides belong to a group of compounds which crystallize as dimers, Nb_2Br_{10} and Ta_2Br_{10} , in which

each unit consists of a central atom surrounded by the halogen atoms at the corners of a more or less distorted octahedron^{4, 5}. Accurate values for bond distances and valence bond angles have not been measured. It has been deduced from NQR experiments⁶ that the intradimeric angle between the bridging bonds decreases through the series of halogens Cl, Br and I in that order. Its value remains, however, between the limits of 97 and 102°. These relatively small changes are not expected to have significant influence on the normal coordinate analysis; we have therefore chosen this angle to be the same in Nb₂Br₁₀ and Ta₂Br₁₀ as in the corresponding chlorides¹, viz. 101.3°. The same

M_2Br_{10}	Nb_2Br_{10}	Ta ₂ Br ₁₀	•
R (equatorial <i>M</i> —Br)	2.42	2.42	
D (bridged M-Br)	2.75	2.75	
T (axial M —Br)	2.47	2.47	

Table 1. Estimated Bond Lengths (in Å) for Nb_2Br_{10} and Ta_2Br_{10}

value was adopted in the NQR work⁶. All the external Br—metal—Br angles were assumed to be 90°. In order to estimate the bond lengths it was assumed that they change by the same ratio when going from chloride to bromide as in the monomeric molecules. It is reported for the monomeric pentahalides from a gas electron diffraction investigation⁷: Nb—Cl = 2.29 Å, Nb—Br = 2.45 Å, Ta—Cl = 2.30 Å and Ta—Br = 2.46 Å. The estimated bond lengths for the dimeric molecules in question are collected in Table 1.

Symmetry Coordinates

The double-octahedron model for the dimeric molecules in question has the symmetry of D_{2h} . The normal modes of vibration are distributed among the symmetry species according to

 $\Gamma_{\rm vib} = 6 \, {\rm A_g} + 2 \, {\rm B_{1g}} + 3 \, {\rm B_{2g}} + 4 \, {\rm B_{3g}} + 2 \, {\rm A_u} + 5 \, {\rm B_{1u}} + 4 \, {\rm B_{2u}} + 4 \, {\rm B_{3u}}.$ This species notation depends on the choice of the cartesian axes; it conforms with the conventions adopted in Ref.².

We believe that the specification of the chosen set of internal coordinates is essentially important when a force field is presented. In the present work we adher to a set of symmetry coordinates as the basis of the force-constant matrix. A detailed account of the symmetry coordinates is found in Ref. ¹.

Force Constants

Following the same approach as applied to Nb_2Cl_{10} ¹ an initial force field for Nb_2Br_{10} was constructed on the basis of valence coordinates with redundancies. Also the numerical values from Nb_2Cl_{10}

Table 2. Final Symmetry Force Constants (mdyne/Å) for Nb₂Br₁₀

$\mathbf{A}_{\mathbf{g}}$	1.612					
0	0.000	2.320				
	0.027	0.000	0.774			
	0.012	0.000	0.016	0.216		
	0.027	0.000	0.045	0.125	0.295	
	0.036	0.000	0.022	0.038	0.019	0.281
B_{1g}	0.148					
-4	0.006	0.158				
$\mathbf{B}_{2\mathbf{g}}$	1.145					
U	0.040	0.120				
	0.003	0.004	0.078			
B_{3g}	1.393					
0	-0.048	0.746				
	0.018	0.018	0.110			
	0.034	0.011	0.026	0.196		
A_{u}	0.120					
	0.001	0.119				
B_{1u}	1.308					
	0.000	2.299				
	0.062	0.000	0.891			
	-0.040	0.000	0.128	0.318		
	0.030	0.000	0.019	0.047	0.244	
B_{2u}	1.334					
	0.031	0.802				
	0.020	0.025	0.128			
	0.052	0.058	0.007	0.305		
${\rm B}_{3{\rm u}}$	1.200					
	0.050	0.130				
	0.019	0.006	0.103			
	0.010	- 0.001	0.002	0.026		

were transferred to Nb₂Br₁₀ except for the three stretching force constants. They were reduced by a ratio taken from the analogy with VOCl₃ and VOBr₃⁸. In conclusion this initial force field is given by $f_r = 1.5$; $f_t = 1.75$; $f_d = 0.75$; $f_{\alpha} = 0.005$; $f_{\tau} = 0.03$; $f_{\beta} = f_{\gamma} = f_{\delta} = f_{\varepsilon} =$ $= f_{\varphi} = 0.12$.

All values are in mdyne/Å, and the notation from Ref. ¹ is adopted. A refined force field for Nb_2Br_{10} was produced with the aid of experi-

mental data of vibrational frequencies (see below). The force constants in terms of symmetry coordinates¹ are shown in Table 2.

The final force constants of Nb₂Br₁₀ (Table 2) were transferred

Table 3. Final Symmetry Force Constants (mdyne/A) for Ta₂Br₁₀

$\mathbf{A}_{\mathbf{g}}$	1.973					
0	0.000	2.340				
	-0.043	0.000	0.830			
	0.015	0.000	0.005	0.236		
	0.017	0.000	0.066	0.127	0,289	
	0.032	0.000	0.027	0.065	-0.042	0.317
B_{1g}	0.131					
	0.015	0.154				
$\mathbf{B}_{2\mathbf{g}}$	1.444					
	0.013	0.097				
	0.011	0.000_{3}	0.082			
\mathbf{B}_{3g}	1.636					
	0.010	0.744				
	0.020	0.012	0.121			
	0.032	0.012	0.036	0.215		
$\mathbf{A}_{\mathbf{u}}$	0.113					
	0.000_{1}	0.113				
B_{1u}	1.659					
	0.000	2.257				
	-0.082	0.000	1.041			
	-0.026	0.000	0.163	0.356		
	0.003	0.000	0.009	0.023	0.294	
\mathbf{B}_{2u}	1.775					
	0.052	0.866				
	0.007	0.009	0.133			
	0.026	0.049	-0.004	0.312		
\mathbf{B}_{3u}	1.568					
	0.029	0.123	0.404			
	0.0000		0.104	0.000		
	-0.003	-0.000_{4}	0.001	0.026		

to Ta_2Br_{10} as the initial approximate set for the latter molecule. Again a refined force field was produced with the aid of experimental frequencies, and the final force constants are shown in Table 3.

Vibrational Frequencies

For a molecule belonging to the model considered here it is predicted by group-theoretical methods that 15 out of the 30 fundamentals

882

Species	Approx.	Final ^a	Potential energy distribution ^b
Ag	287	291	$67 \mathrm{S}_1 + 19 \mathrm{S}_3$
8	193	222	100 S ₂
	155	167	$46~{ m S}_3+26~{ m S}_5+21~{ m S}_4+18~{ m S}_1$
	114	124	$46 \mathrm{S}_4 + 34 \mathrm{S}_6$
	85	78	$73 S_5$
	54	49	$65~{ m S}_4+43~{ m S}_6+32~{ m S}_5+28~{ m S}_3$
B_{1g}	112	130	$79~{ m S}_2+18~{ m S}_1$
-	81	89	$82~{ m S_1}+21~{ m S_2}$
$\mathbf{B}_{2\mathbf{g}}$	336	267	$92 \ \mathrm{S}_1$
	102	103	$92 S_2$
	77	62	$95 \mathrm{S}_3$
B_{3g}	279	261	$74~\mathrm{S}_1 + 17~\mathrm{S}_2$
-	151	153	$78 S_2$
	110	114	$42~{ m S_3}+27~{ m S_4}$
	63	53	$68 \ { m S_4} + 51 \ { m S_3}$
A_u	93	93	$87 S_1$
	37	37	$88~{\rm S_2}$
B_{1u}	294	265	$60~{ m S_1} + 36~{ m S_3}$
	193	221	$100~{\rm S_2}$
	166	159	$64 \ { m S_3} + 34 \ { m S_1}$
	110	115	$57 \ { m S_4} + 24 \ { m S_5}$
	82	71	$68~{ m S_5} + 39~{ m S_4}$
$\mathbf{B}_{2\mathbf{u}}$	283	257	$70~{ m S}_1+20~{ m S}_2$
	149	148	$48~{ m S}_2+30~{ m S}_1+20~{ m S}_3$
	83	98	81 S ₄
	50	53	$66~{ m S_3} + 25~{ m S_2}$
B_{3u}	342	273	91 S ₁
	140	129	$65~{ m S_3}+26~{ m S_4}$
	103	109	$88 S_2$
	28	26	$69 \ { m S}_4 + 26 \ { m S}_3$

Table 4. Calculated and Observed Frequencies (cm^{-1}) along with the Potential Energy Distribution for Nb_2Br_{10}

^a Most of the values are equal to observed frequencies; see the text.

^b Terms below 15 are omitted.

should be Raman-active $(6 A_g + 2 B_{1g} + 3 B_{2g} + 4 B_{3g})$ and 13 infrared-active $(5 B_{1u} + 4 B_{2u} + 4 B_{3u})$. In addition there are 2 fundamentals $(2 A_u)$ inactive in both infrared and Raman.

From the experimental results of *Beattie* et al.² and *Vu-Thi Ngoc-Trâm*³ the 15 Raman-active fundamentals were deduced. One fre-

Species	Approx.	Final ^a	Potential energy distribution ^b
A	237	266	79 S ₁
B	222	223	$100 \mathrm{S_2}$
	166	170	$50~{ m S_3}+27~{ m S_5}+26~{ m S_4}$
	116	126	$41~{ m S_6} + 36~{ m S_4}$
	78	75	$75~{ m S}_5+20~{ m S}_6$
	47	48	$73~{ m S_4} + 39~{ m S_6} + 32~{ m S_3} + 31~{ m S_5}$
B_{1g}	130	130	$77 \; \mathrm{S_2} + 16 \; \mathrm{S_1}$
	89	82	$86~\mathrm{S_1} + 24~\mathrm{S_2}$
B_{2g}	217	247	$94 S_1$
0	101	90	$95 S_2$
	58	60	96 S ₃
$\rm B_{3g}$	215	236	$85 \ S_1$
5	152	150	$86 S_2$
	105	112	$41~{ m S_3} + 33~{ m S_4}$
	53	54	$68~{ m S_4} + 56~{ m S_3}$
A_u	93	90	$87 S_1$
	37	36	$88 S_2$
B_{1u}	221	255	$64~{ m S_1}+26~{ m S_3}$
	216	219	$100 S_2$
	158	163	$78~{ m S}_3+33~{ m S}_1+15~{ m S}_4$
	110	113	$61 \ { m S}_4 + 29 \ { m S}_5$
	71	81	$65~{ m S_5} + 32~{ m S_4}$
B_{2u}	212	252	$78 S_1$
	145	150	$59~{ m S}_2+24~{ m S}_3+22~{ m S}_1$
	95	96	89 S ₄
	53	53	$69 \ { m S_3} + 26 \ { m S_2}$
$\mathbf{B}_{\mathbf{3u}}$	221	258	$93 \ \mathrm{S}_1$
	128	128	$69 \ { m S}_3 + 26 \ { m S}_4$
	106	103	$92 S_2$
	26	26	$68 \ { m S_4} + 26 \ { m S_3}$

Table 5. Calculated and Observed Frequencies (cm^{-1}) along with the Potential Energy Distribution for Ta_2Br_{10}

^a See footnotes to Table 4.

^b See footnotes to Table 4.

quency from the latter author³ was omitted as it did not fit into the set of approximate frequencies (see Table 4) calculated with our initial force field. It is considered permissible to omit this frequency especially because it was not recorded by other workers². The only infrared data available for Nb₂Br₁₀ are due to *Beattie* et al.², who have recorded 12 fun-

damentals, missing one. All the observed fundamentals were used in the refinement of the force field. The missing infrared-active frequency along with the two inactive frequencies were estimated on the basis of the approximate calculations. Table 4 includes the complete set of assigned frequencies for Nb_2Br_{10} consistent with the final force field of Table 2.

The work of *Beattie* et al.² includes 14 Raman-active and 11 infrared-active fundamentals for Ta_2Br_{10} as the only source of experimental frequencies available for this molecule. We have again estimated the missing frequencies from the approximate calculations and used them along with the observed frequencies in the refinement of the force field. The calculated frequencies from the initial and final force fields are given in Table 5.

Potential Energy Distribution

The potential energy distributions for Nb_2Br_{10} and Ta_2Br_{10} were calculated from the final force fields. The results are included in Tables 4 and 5, resp.

Discussion

The approximation of a valence force field showed to give very good initial values of vibrational frequencies for Nb_2Br_{10} when compared with the experimental data. In addition to a general qualitative agreement through the whole range of frequencies we found quantitative agreements within a few wave numbers in many cases. This may seem surprising and especially gratifying in view of the great simplicity of the approximate force field. Also the initial force field for Ta_2Br_{10} with force constants transferred from Nb_2Br_{10} showed to be successful. In conclusion no substantial difficulties were encountered in the assignment of the frequencies.

Mean Amplitudes of Vibration

The final force fields were used to calculate the mean amplitudes of vibration⁹ for the two molecules in question. Results for the bonded

${M}_2{ m Br_{10}}$	Nb_2Br_{10}		$\mathrm{Ta_2Br_{10}}$	
Temperature	0 K	$298\mathrm{K}$	0 K	$298\mathrm{K}$
<i>M</i> —Br (equatorial)	0.040	0.057	0.036	0.051
M—Br (axial) M—Br (bridged)	$\begin{array}{c} 0.040\\ 0.045\end{array}$	$0.055 \\ 0.075$	$\begin{array}{c} 0.036\\ 0.042 \end{array}$	$\begin{array}{c} 0.050 \\ 0.072 \end{array}$

Table 6. Mean Amplitudes of Vibration (A Units) for the Bond Distances $in Nb_2Br_{10}$ and Ta_2Br_{10}

886 H. Hovdan et al.: Vibrational Analysis of Nb₂Br₁₀ and Ta₂Br₁₀

interatomic distances are given in Table 6. The values display the same characteristics as were found and discussed in the case of Nb_2Cl_{10} and Ta_2Cl_{10} ¹.

Acknowledgement

W. Brockner is indebted to the Royal Norwegian Council for Scientific and Industrial Research for a Postdoctorate Research Fellowship.

References

- ¹ S. J. Cyvin, H. Hovdan, and W. Brockner, Inorg. Nucl. Chem. (in press).
- ² I. R. Beattie, T. R. Gilson, and G. A. Ozin, J. Chem. Soc. A 1968, 2765.
- ³ Vu-Thi Ngoc-Trâm, Diplomarbeit, Technical University Clausthal, 1973.
- ⁴ A. Zalkin and D. E. Sands, Acta Cryst. 11, 615 (1958).
- ⁵ L. Kepert and R. S. Nyholm, J. Chem. Soc. 1965, 2871.
- ⁶ P. A. Edwards and R. E. McCarley, Inorg. Chem. 12, 900 (1973).
- ⁷ H. A. Skinner and L. E. Sutton, Trans. Faraday Soc. 36, 668 (1940).
- ⁸ H. Hovdan, S. J. Cyvin, and W. Brockner, Z. Naturforsch. **29** a, 706 (1974).
- ⁹ S.J. Cyvin, Molecular Vibrations and Mean Square Amplitudes. Oslo: Universitetsforlaget. 1968.

Correspondence and reprints:

Dr. W. Brockner Anorganisch-Chemisches Institut Technische Universität Clausthal D-3392 Clausthal-Zellerfeld Federal Republic of Germany